The influence of PKA treatment on the Ca2+ activation of force generation by trout cardiac muscle.
نویسندگان
چکیده
β-Adrenergic stimulation of the mammalian heart increases heart rate, the strength of contraction as well as the kinetics of force generation and relaxation. These effects are due to the phosphorylation of select membrane and thin filament proteins by cAMP-activated protein kinase (PKA). At the level of the sarcomere, it is typically the phosphorylation of cardiac myosin binding protein C (cMyBP-C) and cardiac troponin I (cTnI) that is responsible for the change in the kinetics of contraction and relaxation. Trout cTnI (ScTnI) lacks two critical PKA targets within the N-terminus of the protein that, when phosphorylated in mammalian cTnI, cause a reduction in myofilament Ca(2+) affinity. To determine what role the contractile element plays in the response of the trout heart to β-adrenergic stimulation, we characterized the influence of PKA treatment on the Ca(2+) activation of skinned preparations dissected from ventricular trabeculae. In these experiments, isometric force generation and the rate of force development were measured over a range of Ca(2+) concentrations. The results demonstrate that PKA treatment does not influence the Ca(2+) sensitivity of force generation but it decreases maximum force generation by 25% and the rate of force re-development at maximal activation by 46%. Analysis of the trabeculae preparations for phosphoproteins revealed that PKA treatment phosphorylated myosin light chain 2 but not cTnI or cMyBP-C. These results indicate that the function of the trout cardiac contractile element is altered by PKA phosphorylation but in a manner different from that in mammalian heart.
منابع مشابه
Effects of phosphorylation of troponin I and C protein on isometric tension and velocity of unloaded shortening in skinned single cardiac myocytes from rats.
Effects on isometric tension generation and maximum velocity of unloaded shortening after exposure to cAMP-dependent protein kinase (PKA) were investigated in rat enzymatically isolated, tritonized ventricular myocytes. Exposure of myocytes to PKA in the presence of [32P]ATP resulted in phosphorylation of troponin I and C protein. Ca2+ sensitivity of isometric tension was assessed as pCa50, ie,...
متن کاملIncreasing mammalian cardiomyocyte contractility with residues identified in trout troponin C.
The Ca2+ sensitivity of force generation in trout cardiac myocytes is significantly greater than that from mammalian hearts. One mechanism that we have suggested to be responsible, at least in part, for this high Ca2+ sensitivity is the isoform of cardiac troponin C (cTnC) found in trout hearts (ScTnC), which has greater than twice the Ca2+ affinity of mammalian cTnC (McTnC). Here, through a se...
متن کاملProtein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C.
Beta-adrenergic agonists induce protein kinase A (PKA) phosphorylation of the cardiac myofilament proteins myosin binding protein C (cMyBP-C) and troponin I (cTnI), resulting in enhanced systolic function, but the relative contributions of cMyBP-C and cTnI to augmented contractility are not known. To investigate possible roles of cMyBP-C in this response, we examined the effects of PKA treatmen...
متن کاملThe influence of trout cardiac troponin I and PKA phosphorylation on the Ca2+ affinity of the cardiac troponin complex.
The trout heart is 10-fold more sensitive to Ca(2+) than the mammalian heart. This difference is due, in part, to cardiac troponin C (cTnC) from trout having a greater Ca(2+) affinity than human cTnC. To determine what other proteins are involved, we cloned cardiac troponin I (cTnI) from the trout heart and determined how it alters the Ca(2+) affinity of a cTn complex containing all mammalian c...
متن کاملL-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation.
A patch-clamp analysis of L-type Ca2+ current in ventricular myocytes of cold- and warm-acclimated rainbow trout (Oncorhynchus mykiss) and crucian carp (Carassius carassius) hearts was performed. Trout were acclimated at 4 and 17 degrees C and carp at 4 and 24 degrees C for a minimum of 4 weeks. Ventricular myocytes were isolated by enzymatic dissociation using collagenase and trypsin. Marked s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 12 شماره
صفحات -
تاریخ انتشار 2011